

AheadTechs 伺服调试步骤说明

Version	V1. 1
Date	2020/11/30

History:

Version	Date	Change	Author	Reviewer	Date
V1. 0	2020/9/28	创立手册	MZT	MAXS	2020/9/29
V1. 1	2020/11/30	创立手册	MZT	MAXS	2020/11/30

感谢您选择本公司的产品!

本手册对嘉强 **AheadTechs 品牌伺服驱动器** 的调试使用做了详细的介绍,包括步骤、操作、维护说明等。如果您还有其它事项需要了解的,可直接咨询本公司。

在使用本系列伺服驱动器及相关的设备之前,请您详细阅读本手册,这将有助于您更好地使用它。

目录

第一章	制动电阻选型	. 3
1.3	1 制动电阻选型	.3
第二章	伺服接线以及上电设置	.3
2.:	1 伺服上电	. 3
第三章	伺服增益设置	. 4
3.:	1 填写合适的惯量比	.4
	3.1.1 横量轴	.4
	3.1.2 龙门轴	.4
	2 调整刚性等级	
	3 关闭刚性等级表	
3.4	4 手动调整速度环参数	.4
3.5	5 手动调整位置环参数	.5
3.0	5 增益调试总结	.5
3.	8 关于 2.5KW 伺服驱动器适配 2.3KW 电机参数设置	.6
第四章	伺服驱动器常见报警处理方法	.7
4.3	1,报警处理方法	.7
4.2	2 伺服驱动器参数设置教程演示	8
	4.2.1 以更改 07.20 参数为例	8
4.3	3 ,如何使用软件进行监控	11

第一章 制动电阻选型

1.1 制动电阻选型

电机功率小于 1KW, 使用 40 欧姆 200W 制动电阻 电机功率大于等于 1KW, 使用 30 欧姆 400W 制动电阻

第二章 伺服接线以及上电设置

2.1 伺服上电

正常上电之后,伺服在没有使能情况下,键盘显示为"ok rdy",此时表示伺服准备好,可以正常运行。

若上电键盘显示"no rdy",此时有两种情况:

- A) 机器为 750W 及以下机型时,则检查输入电源的接线是否接错,正常接线时,5pin 端子的第 3 个脚是没有接线的;正常接线之后若依然"no rdy",则查看 P21.06(母线电压值),正常电压在 311.0V 左右,不正常则再次检查输入电源;若母线电压正常,伺服"no rdy",则可能需要更换驱动器;
- B) 机器为 1kw 及以上机型,由于功率较大,原则上是需要接入三相 220V 电源的,否则会对机器的可靠性产生影响,同时也可能影响驱动器的控制性能,如确实需要使用单相 220V 电源输入时,需要将电源是输入缺相屏蔽 ,设置 P06.30=1,P07.22=1001 即可,另外需要注意电源输入前端是否存在"伺服电子变压器";伺服电子变压器的作用是将三相交流 380V 转换成三相交流 220V 电源,但此变压器输出的 220V 电不是严格的三相交流电,其中两相为同相位,另一相为 0V,此时可能出现以下情况:
- ①伺服上电无显示,可以判定控制电接到了同相位的输出端了,改一根接线到剩下的那一相即可:
- ②伺服上电显示"no rdy",查看 P21.06(母线电压值)电压正常,此时只需屏蔽输入缺相即可。

第三章 伺服增益设置

3.1 填写合适的惯量比

3.1.1 横量轴

可以通过伺服自主移动推测惯量比。服处于 OK_RDY 状态时,更该参数 P20.03 的值,值为 1 时电机正转 5 圈,值为 2 时电机反转 5 圈。移动完成后,面板会显示推算出的惯量比

3.1.2 龙门轴

P21.11 显示实时惯量比, 手动通过上位机移动轴后观察惯量比

提醒:皮带系统辨识的惯量值显示值偏大(离线辨识和在线辨识),实际设置值可为显示值一半及以下即可。

3.2 调整刚性等级

进入 P00.03,增加刚性等级,调整完后移动电机,直到运动或者停止后电机出现共振或 啸叫,啸叫后减小电机的刚性等级,直到电机不啸叫为止

3.3 关闭刚性等级表

将 P00.02 的值设为 0,来关闭刚性等级表,准备手动调试增益参数

		设定范围	出厂值	单位	生效方式	相	关模	式
P00.02	实时自调整模式	0 ~ 3	1	_	立即生效	Р	S	Т

设定实时自动调整的模式。

- 0: 无效,实时自动调整功能无效。
- 1:标准模式,无增益切换。
- 2: 定位模式,有增益切换,特别适合位置控制。
- 3: 负载特性动态测试,但不设定参数。

3.4 手动调整速度环参数

P01.01 速度环增益 1 经验值: 一般小于 1000

		设定范围	出厂值	单位	生效方式	相	关模	式
P01.01	速度环增益1	10 ~ 20000	200	0.1Hz	立即生效	Р	S	

设定速度环增益,决定速度环响应水平。

1.0Hz~2000.0Hz。

增益越大,速度环响应越快。但是设定值过大可能会引起振动。

P01.02 速度环积分时间 1

		设定范围	出厂值	单位	生效方式	相	关模	式
P01.02	速度环积分时间1	15 ~ 51200	3000	0.01ms	立即生效	Р	S	

设定速度环控制器的积分时间。

0.15ms~512.00ms。

设定值越小,稳态偏差越小。当积分时间等于512.00时,积分无效。

3.5 手动调整位置环参数

P01.00 位置环增益 1

经验值:约为 1500

		设定范围	出厂值	单位	生效方式	相	关模	式
P01.00	位置环增益1	10 ~ 20000	400	0.1/s	立即生效	Р		

设定位置环增益,决定位置环响应水平。

1.0/s~2000.0/s。

增益越大,位置环响应越快。但是设定值过大可能会引起振动。

3.6 增益调试总结

- 1、位置环增益对切圆等插补运动影响最大,位置环增益越大,插补性能越好(即园越园)
- 2、 啸叫: 由于刚性过大导致,可先减小速度环增益与积分时间
- 3、停下后共振:可通过减小 P01.04 的值消除

		设定范围	出厂值	单位	生效方式		相关模式	
P01.04	转矩指令滤波1	0 ~ 10000	100	0.01ms	立即生效	Р	S	Т

设定转矩指令部分的一阶低通滤波器时间常数。

0.00ms~100.00ms。

可抑制因为机械扭曲而产生的共振。

3.7 伺服驱动器参数设置(必须设置参数)

参数	设定值	定义及作用
P06. 30	1	此参数为大功率(1KW及以上)电机接了单相220V或者使用电子变压器时设置。
P06. 36	50	欠压保护点,设置报警 ERR21 时的阈值,默认 100。
P06. 39	1	禁止 08 报警,有些客户的地线并不是正确的地。
P06. 40	99	编码器干扰滤波检测次数。
P07. 22	H1111	此参数为面板显示 16 进制数,用于屏蔽报警 ERR21 欠压报警与 ERR18 控制电源欠压报警, 以及电子变压器供电的情况下,驱动器显示 NO rdy。

3.8 关于 2.5KW 伺服驱动器适配 2.3KW 电机参数设置

(必须设置参数)

参数	设定值	定义及作用
P07. 20	1	参数设置(注: 需先设置此参数再设置 18 组参数)。
P18. 00	65535	设置电机型号编码参数。
P18. 02	0	设置电机动力线相序方向。
P18. 03	220	设置额定电压。
P18. 04	230	设置额定功率。
P18. 05	1200	设置额定电流。
P18.06	1500	设置额定转矩。
P18. 07	3300	设置最大转矩。
P18. 08	1500	设置额定转速。
P18.09	2000	设置最大转速。
P18. 10	1270	设置转动惯量 JM。
P18. 11	5	设置永磁同步电机极对数。
P18. 12	240	设置定子电阻 Rs。
P18. 13	366	设置 q 轴电感 Lq。
P18. 14	337	设置 d 轴电感 Ld。
P18. 15	8308	设置反电势系数。
P18. 16	1270	设置转矩系数。
P18. 17	0	设置绝对码盘初始位置。
P18. 19	1	设置编码器选择。
P18. 21	131072	设置编码器分辨率。
P18. 23	0	设置Z对应电电角度。
P18. 24	0	设置U上升沿对应电角度。

注:设置好参数后需将驱动器电源重启后即可。

AheadTechs

第四章 伺服驱动器常见报警处理方法

4.1,报警处理方法

报警代码: ERR.13

报警内容:编码器线通讯异常报警原因:1,编码器线断线。

2,运行环境恶劣,干扰过大。

3, 电机编码器故障。

处理方法:

1, 编码器线断线

a,运行过程中编码器断线会报警 ERR.13,重启伺服之后如果报警 ERR.07,可跟换线缆排查是否线缆存在问题。

b,跟换编码器线缆。

2,运行环境恶劣,干扰过大

- a,检查客户机台是否接地,地线是否为正真的地。
- b,将参数 P06.40 设置到 50,如果还是报警可能编码器线缆接触不良,排查编码器线缆。
- c,编码器线缆不要过长,建议不超过 20M。
- d,驱动器侧动力线 UVW 上绕上磁环,最少<mark>两圈</mark>,且为闭环式磁环,地线不要绕进。(如图建议最少 2 层卷数)

3, 电机编码器故障

- a,上述操作还是报警 ERR.13,可能电机编码器存在问题,请判断是否存在撞击或者敲打情况。
 - b,请联系嘉强售后人员进行排查。

报警代码: ERR.94

报警内容:外接再生泄放电阻过小。

报警原因: 1.外接再生泄放电阻小于驱动器要求的最小值。

2.参数设置错误。

处理方法:

1. 出现 94 报警是加了制动电阻后参数设置有误导致,关于制动电阻方面的参数无需改动,默认即可。

2. 确认外接再生泄放电阻是否在驱动器要求范围内。

4.2 伺服驱动器参数设置教程演示

4.2.1 以更改 07.20 参数为例

1.按下驱动器上的"m"键(若驱动器显示报警则需先按下驱动器"s"键即可)

2.之后在屏幕闪烁的位置点击向上按钮,点击7下后,闪烁位置显示7即可,(按向下按键

可减小数值;向左按钮可改变参数设置的位置

) 加下图 航景

答询热线: 400-670-1510 Email: sales@empower.cn 网址: www.empower.cn

AheadTechs

3. 设置好后,再点击"S"键进行确认,继续进行设置,如下图所示

4. 通过向左按钮改变设置数值的位置 , 将参数设置为 "P07.20", 如下图所示

5. 设置好后,再点击"S"键确认,进入设置参数界面

6. 将配置参数按要求进行设置,将参数设置好后再点击"S"键即参数设置成功

1.设置好参数

2.点击"S"确认

注: 更改伺服配置参数时,有些配置参数需要重启伺服电源 后参数才能生效。

4.3,如何使用软件进行监控

:嘉强伺服软件 Arteact learns (AheadTechs)来判断是否存在干扰导致编码器报警

ERR.13。操作如下:

- 1, 打开伺服软件, 并连接上驱动器。(这边不做详细操作说明)。
- 2, 打开示波器显示画面。

3,设置采集内容(任意选择一个通道修改为<mark>编码器干扰次数</mark>),采样周期(10*125us)以及触发条件(这边选择水平之上触发)。

4,确认好以上操作之后,点击<mark>获取结果</mark>

等待触发,如果采集到了波形,查

看干扰次数,证明现场确认存在编码器干扰。

5,确认干扰问题请按照文档开头部分处理方法第二部分减少现场干扰。

通过上述操作还是无法解决,请联系嘉强售后人员。

(售后电话热线: 400-670-1510)

